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SEPARATION SCIENCE AND TECHNOLOGY, 23(4 & 5), pp. 451-471, 1988 

Further Investigations on the General Theory of 
Quasi-Static Linear Gradient Chromatography 

TSUTOMU KAWASAKI 
CHROMATOGRAPHIC RESEARCH LABORATORY 
KOKEN CO. LTD. 
3-5-18 SHIMO-OCHIAI. SHINJUKU-KU. TOKYO 161. JAPAN 

Abstract 

The earlier theory of quasi-static linear gradient chromatography is still 
generalized. The present theory is valid whatever may be the initial location of the 
sample molecules on the column. and the condition imposed upon the quasi- 
static chromatography is less severe in this theory than earlier. The earlier theory 
represents a special case of the present theory. The universal continuity equation 
for any quasi-static chromatography is derived. from which the continuity 
equation that cuusully describes the chromatographic process can be derived for 
both gradient and isocratic (or stepwise) chromatographies. 

INTRODUCTION 

Earlier ( I )  a general theory of quasi-static linear gradient chroma- 
tography was developed. However, the theory was only valid for the case 
when a molecular band with an infinitesimal width is formed initially at 
the inlet of the column ( I ) .  In the present work, the fundamental 
continuity equation of gradient chromatography that appeared in Ref. 1 
is studied in detail. It is shown that the continuity equation can be solved 
under a general initial condition. The present theory is valid whatever 
may be the initial location of the sample molecules on the column, and 
the condition imposed upon the quasi-static chromatography is less 
severe in this theory than earlier. The earlier theory ( I )  represents a 
special case of the present theory. 

The universal continuity equation for any quasi-static chromatography 
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452 KAWASAKI 

is derived, which only represents the conservation of the amount of solute 
molecules in a vertical column section. From the universal equation, 
the continuity equation that causally describes the chromatographic 
process can be derived for both gradient and isocratic (or stepwise) 
chromatographies. 

Physical meanings of any symbols involved in the equations are given 
at the end of this paper. 

THEORETICAL 

(A) General Consideration on the Fundamental Continuity Equation 
of Gradient Chromatography 

The fundamental continuity equation of gradient chromatography (Eq. 
21 in Ref. I)  can be written as 

A proof is given below that a function r(s, m) exists which fulfills the 
relationship 

and, in Section D, it will be shown that B can, in general, be represented 
as a function of r as 

B(s,  m) = B ( r )  ( 3 )  

Proof of Eq. (2). In general, it is possible to find a function r(s, m) that 
fulfills only the right-hand side equality in Eq. (2). Similarly, it is possible 
to find another function r(s, rn) that fulfills only the equality between the 
extreme left-hand side term and the extreme right-hand side term in Eq. 
(2). It is therefore sufficient to show that the left-hand side equality in Eq. 
(2) is generally fulfilled. Figure 1 illustrates another expression of Fig. 1 in 
Ref. I, Appendix 11. Thus, in Fig. 1, the abscissa L' in Fig. 1 of Ref. 1 is 
transformed to s, which is defined as s = g'L' on the basis of the first point 
of view on gradient chromatography (see Ref. I, Appendix IT). It can be 
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FURTHER THEORY OF GRADIENT CHROMATOGRAPHY 453 

m 

C S  
f S O  - 0 min 

m- min 

FIG. 1. Schematic representation of the principle of gradient chromatography. s in the 
abscissa ,Y represents the relative longitudinal column position, g'L' (first point of view) 
whereas s in the ordinate rn represents "time" (second point of view). Cf. Fig. 1 in Ref. 1,  

Appendix 11. 

seen that Fig. 1 is symmetric between the s and the m axis. This means 
that the expression (drldm),v (which is based on the first point of view) is 
equal to the other expression (drlds), (which is based on the second point 
of view on gradient chromatography). 

From both Eqs. (2) and (3) 

drlB(r) = ds + dm (4) 

is derived. Assuming that, when both s = 0 and m = mint then r = 0, Eq. 
(4) can be integrated to give 

- s + m - m i ,  dr 
( 5 )  

Introducing the parameters 

0 = C/B(s ,  m )  

and 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



454 

Eq. (1) can be rewritten as 

+ [%Im = 

KAWASAKI 

(7) 

in which, if C, a, and F are denoted by a common symbol f, f is 
considered to be a function of s and m cf =f(s, m)).  Due to Eq. ( 5 ) ,  
however, it is possible to consider that f is a function of s and r 
cf = j [ s ,  r(s, m)])  from which it follows that 

and that 

where both Eqs. (2) and (3) have been used. 

Eq. (1'). 
By replacingfwith C, a, and F, and applying both Eqs. (8) and (9) to 

or 

an div,(n - g ' 0  grad, SZ) + ~ = 0 as 

can be derived. Under a general initial condition: 

n(s+O, r )  = n,(r) 

where f i0(r)  is any function, Eq. (10) or (10') has a solution: 
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Especially when 

Eq. (12) reduces to 

455 

(12) 

By using Eqs. (2), (3), and (6), Eq. (1 1) can be rewritten as 

and Eq. (13) can be rewritten as 

since when s = r = 0, then m = mi, (Eq. 5). By applying both Eqs. ( 3 )  and 
(6) to Eqs. (12) and (14), 

and 

4g'O.r 
C(s, m) = 

can be derived. Equation (17) is a solution to Eq. ( 1 )  obtained under the 
initial condition given by Eq. (15) or (1 1); Eq. (18) is a solution obtained 
when the function C,(m) or O,(r) has a special form represented by Eq. 
(16) or (13). (It will be understood later that the initial condition 
represented in the form of Eq. 15 is not convenient for practical purposes. 
The initial condition given in the form of Eq. 11 or that given in the form 
of Eq. 22 is adequate. See Section C and Discussion Section B.) With Eq. 
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456 KAWASAKI 

(9, both Eqs. (17) and (18) represent C as a function of both s and m by 
using r as an intermediate parameter. 

(6) Universal Continuity Equation for Any 
Quasi-Static Chromatography 

Introducing transformations: 

L’ = r/g’ 

and 

w = s/gl 

Eq. (10) or (lo’) can be rewritten as 

or 

Equations (1 1)-( 14) become 

( 2 2 )  O(W-0, L‘)  = n,(L’) 

and 

1 4 Q W  n(w,L’) = 

respectively. 
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FURTHER THEORY OF GRADIENT CHROMATOGRAPHY 457 

It  can be considered that, in Eqs. (19)-(25), L’ represents the general 
longitudinal position on the column expressed as the sum of interstitial 
volumes involved between the column inlet and the column position 
under consideration. 

W has a physical meaning of the longitudinal column position of the 
molecular band with an infinitesimal width occurring, provided that an 
infinitesimal molecular band was initially introduced at the inlet of the 
column and that no longitudinal diffusion occurs on the column (0 = 0). 
In other words. W represents the distance (expressed in units of volume) 
between the column inlet and the position of the infinitesimal molecular 
band. In the actual case when the initial molecular band has a finite 
width and when molecular diffusion occurs on the column, the position 
W would always be involved within the range over which the band is 
extending. This means that W, in general, represents the distance between 
the column inlet and a mean position of the molecular band migrating 
on the column. W therefore increases monotonically with a lapse of 
time. 

It can be considered that Eq. (21) or (21’) represents a universal 
continuity equation for any quasi-static chromatography including both 
gradient and isocratic (or stepwise) chromatographies. It should be 
pointed out, however, that, although W increases with time (see above), 
how W increases with time is not at all described by Eq. (21) or (21’). This 
means that, although the conservation of the amount of solute molecules 
in a vertical column section can be represented by Eq. (21) or (21’), it is 
impossible in principle for any chromatographic process to be cuusulZy 
described by Eq. (21) or (21’). (For further arguments, see Section F and 
Discussion Section A.) 

(C) Interpretation of the Parameter r and the Physical Meaning of 
the Initial Condition, Eq. (11) 

It can be interpreted that the parameter r that has finally been defined 
by Eq. (5) represents the relative longitudinal position on the column 
since I is proportional to L’ (Eq. (19). This means that Eq. (1 1) (which is 
equivalent with Eq. 22) represents the initial location of the sample 
molecules on the column; in this concept, the idea of the existences of the 
mobile and the staionary phase is not involved, and the total molecular 
density fl is considered instead of the density C occumng in the mobile 
phase. It is a&,’) or a&-), rather than Co(rn), that can experimentally be 
realized. Therefore, on treating the fundamental continuity equation, Eq. 
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458 KAWASAKI 

(l), it is convenient to use the initial condition given in the form of Eq. 
(1 I )  rather than that given in the form of Eq. (15). (For further arguments, 
see Discussion Section B.) 

(D) Consideration on Eq. (3) 

We show below that Eq. (3) is valid with any gradient chromatography. 
Thus, the parameter r represents the longitudinal position on the column 
(Section C), and it can be considered that the property of a longitudinal 
column position is characterized by the mean concentration, m, of the 
gradient element (see Ref. 1) existing within the vertical section at that 
position. This means that r is a function of m. The property of the 
position r also changes with time or “time” s (second point of view). In 
fact, if the position r a t  which m is constant is pursued with a lapse of time 
or “time” s (the position r migrates on the column with a velocity equal to 
the migration velocity of the gradient itself), then it will be observed that 
the variance in concentration of the gradient element around the mean 
value m (within the vertical column section at the position r) increases 
because of the longitudinal diffusion occurring in the column; this will, 
gradually. change the property of the position r .  This means that r also 
depends upon s, thus leading to r = r(s, m) or Eq. (3). 

It should be recalled (1) that the concentration gradient is defined as 
the gradient obtained by connecting m values occurring within respective 
column sections, which is linear with linear gradient chromatography. 
The linear concentration gradient is virtually undisturbed by the 
longitudinal diffusion of the gradient element in the column since the 
diffusion effect is canceled out among different column sections ( I ) .  

(E) Relationship with the Earlier Theory (7) 

Earlier ( I )  it was shown that (a) if the longitudinal diffusion of the 
sample molecules occurs in parallel with that of the gradient element in 
the column, directly provoked by the first type of flow heterogeneity in the 
carrier liquid (Ref. 1, Appendix I), and (b) if a band of the sample 
molecules with an infinitesimal width is formed initially at the inlet of the 
column,* then the function B(s, m) is characterized (see Eqs. 25-27 in Ref. 
1 )  by 

*For the other assumptions, see the earlier paper ( 1 ) .  
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FURTHER THEORY OF GRADIENT CHROMATOGRAPHY 459 

m = m h  + ; ( m i )  - s (27) 

and 

Under the initial condition given by both Eqs. (15) and (16) (i.e., that 
given by both Eqs. 11 and 13), Eq. (1) has a solution: 

(see Eq. 36 in Ref. I ) .  With both Eqs. (27) and (28), Eq. (29) represents C as 
a function of both s and m by using mh as an intermediate parameter (see 
Ref. I). 

The purpose of this section is to show 1) that Eq. (26) is generally valid 
even in the absence of both Assumptions (a) and (b), and that Eq. (26) is 
equivalent with Eq. (3); 2) the function B(s,m) can be characterized by 
Eqs. (26)-(28) only if Assumption (a) is fulfilled, i.e., independently of the 
initial chromatographic condition: and 3) the argument in this section is 
involved in the argument made in Section A. This means that Eq. (29) 
represents a special case of Eq. (18), and that, under the general initial 
condition given by Eq. (15) (i.e., that given by Eq. ll),  Eq. (29) can be 
extended to have a general expression: 

(cf. Eq. 17). 
Proof that Eq. (26) is generally valid in the absence of both Assumption (a) 

and (b), and that Eq. (26) is equivalent with Eq. (3). Let us recall the proof of 
Eq. (26) (i.e., Eq. 25 in Ref. 1)  given in the paragraph "Proof. (Step 1)" in 
Theoretical Section B of Ref. 1. The key point of this proof can be stated 
in the following way. Thus, a molecular band with an infinitesimal width 
migrates in each microcolumn (for microcolumn, see Ref. I ) ,  and the 
longitudinal positions of infinitesimal bands belonging in different 
microcolumns are always different from one another on the total column. 
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460 KAWASAKI 

As a result, the partition, B, in solution of sample molecules occurring 
within a vertical section (with an infinitesimal thickness) of the total 
column represents the partition, B’, occurring in the vertical section of 
one of the microcolumns; the vertical section of the microcolumn under 
consideration is part of the vertical section of the total column. In the 
vertical section of the microcolumn the concentration of the gradient 
element is mh while the mean concentration of the gradient element in the 
vertical section of the total column is m. Equation (26) is fulfilled because 
the relationship between mh and m depends upon “time” s. 

In Ref. I it was stated, however, that the situation where an infinite- 
simal molecular band is present in each microcolumn and where the 
phases of the bands belonging in different microcolumns are different 
from one another (except just at the beginning of chromatography) is 
realizable only if the width of the initial molecular band introduced at 
the inlet of the column is infinitesimal (Assumption b). This is because, 
due to its physical meaning, the cross-sectional area of a microcolumn 
should be finite with a diameter of the order of magnitude of the 
interdistances among packed particles in the column (see Ref. 1). 

Provided the cross-sectional area of any microcolumn is infinitesimal, 
however, it would, in general, be possible to fill the interior space of the 
total column with microcolumns in such a way that, at any instant, each 
microcolumn captures only solute molecules (with infinitesimal dimen- 
sions) existing within an infinitesimal space in the total column. The 
other part of the microcolumn under consideration runs in the interior of 
the total column while avoiding the spaces filled with the other solute 
particles. This means that, independently of the shape of the molecular 
band migrating in the total column (therefore, independently of the 
initial location of the molecules on the column), the total column can be 
divided into an infinite number of microcolumns in such a way that the 
molecular bands with an infinitesimal width are distributed among the 
respective microcolumns and that the phases of infinitesimal bands 
belonging in different microcolumns are always different from one 
another, at least, by an infinitesimal magnitude. It would, in general, be 
possible to hypothesize that longitudinal positions of any solute particles 
(with infinitesimal dimensions) on the total column are different from 
one another, at least, by an infinitesimal magnitude. [This hypothesis is 
related to the theorem of the continuity of the real numbers or 
Dedekinds theorem. The hypothesis that a microcolumn can capture 
only solute molecules existing within an infinitesimal space in the total 
column and that the other part of the microcolumn can run in the 
interior of the total column while avoiding the spaces filled with the other 
solute particles (see above) is also related to Dedekinds theorem.] 
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FURTHER THEORY OF GRADIENT CHROMATOGRAPHY 461 

The concept of the microcolumn with an infinitesimal cross section is 
quite general. [This can be applied more widely than the concept of the 
microcolumn with a finite cross-sectional area of the order of magnitude 
of the interdistances among packed particles in the column (see above).] 
This means that Eq. (26) is fulfilled quite generally, and that Eq. (26) is 
equivalent with Eq. (3) ,  thus leading to 

B’(m,) = B ( r )  (31)  

Proof that the function B(s, m) can be characterized by Eqs. (26)-(28) only if 
Assumption (a) is fuljilled independently of the initial chromatographic 
condition. Due to Assumption (a), the migration of a molecular band with 
an infinitesimal width occumng in a microcolumn can be described (see 
Appendix) by 

sh = i (mJ ( 3 2 )  

where Y(mh) is here defined as 

and, on the basis of the first point of view on gradient chromatography, sh 
can be represented as 

g ’ Sh = - ’ LL6h = g’L; 
6h ( 3 3 )  

In Eqs. (32), (28’), and (33), Li6h or (sh/g’). 6h has a physical meaning of 
the position of the infinitesimal molecular band on the microcolumn, 
and mh represents the concentration of the gradient element at the 
position where the infinitesimal band exists. [L (mJg’] 6h represents the 
position of the band as a function of mh (Eq. 32). 

Since sA and s can be written (1 )  as 

s, = ma - m h  (34)  

and 

s = m , - m  ( 3 5 )  

respectively, then, by substituting Eq. (32) into Eq. (34), and eliminating 
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462 KAWASAKI 

m, between Eqs. (34) and ( 3 9 ,  Eq. (27) can be derived. (For Eq. 35, cf. Fig. 
1 .) 

The integration constant in Eq. (28’) can be determined in order for Eq. 
(28‘) to be fulfilled under a condition where a molecular band with an 
infinitesimal width is formed at the inlet of the total column initially or at 
‘time” s = 0 (second point of view). Thus, both Eqs. (34) and (35) show 
that the concentration, m,, of the gradient element in the first infinite- 
simal vertical section at the inlet of the total column is always 
homogeneous (cf. Fig. 1). Therefore, writing mi” for the m ,  value occurring 
at “time” s = 0, it can be stated that, when s = 0, then an infinitesimal 
molecular band is formed at the inlets, ( i /g ’ )  - 6h = 0, of the respective 
microcolumns where m ,  = rn = mi,. This means that, when mh = mi,, 
then 

Hence, both Eqs. (27) and (28) have been derived by using only 
Assumption (a); this means that the function B(s, m )  can be characterized 
by Eqs. (26)-(28) only if Assumption (a) is fulfilled. 
Proof that the argument in this Section is involved in the argument made in 

Section A. By using Eq. (31) it is easy to derive, from Eqs. (26)-(28), Eqs. 
(2)-(5), and the relationship, 

= 0, thus leading to Eq. (28). 

Further, by applying Eqs. (27), (31), and (36) to Eqs. (17) and (18), Eqs. 
(30) and (29) can be derived, respectively. 

The argument in this section is involved in the argument made in 
Section A since an additional assumption (Assumption a) is present only 
in the argument in this section. 

(F) Relationship with lsocratic (or Stepwise) Chromatography 

With isocratic (or stepwise) chromatography, introducing a trans- 
formation: 

W = B Y  (37) 

where B is constant, the universal continuity equation, Eq. (21) or (217, 
can be rewritten as 
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or 
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(38') 
an 
av div,,(Zn - OB grad,. n) + __ = 0 

(Equation 38' represents the same equation as Eq. 4 in Ref. I.) Under a 
general initial condition: 

Sl(V-0, L ' )  = n2,(L') (39) 

Eq. (38) or (38') has a solution: 

( L ' -8 v- L")2 
m 

dL" (40) 
1 4 8 8  V 

Especially when 

Eq. (40) reduces to 

Sz,(L') = S(L') 

1 4 8 8  V n(v, L ' )  = 

Equations (38), (38'), (39)-(42) correspond to Eqs. (lo), (lo'), (1 1)-( 14) for 
gradient chromatography, respectively. 

Further, introducing the parameter 

C = n * B  (43) 

Eq. (38) or (38') can be rewritten as 

or 

ac 
av div,.(gC - OB grad,, C )  + ~ = 0 

Equations (39)-(42) become 

(44') 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



464 

C(V-+O, L ' )  = C,(L') n,(L') * B 

KAWASAKI 

(45) 

C,(L') = 6(L ' )  B (47) 

and 

respectively. [Equations 46 and 48 can also be obtained by replacing Cl 
in Eqs. 40 and 42 by ClB (see Eq. 43), respectively.] Equations (44'), 
(45)-(48) correspond to Eqs. (l), (15)-(18) for gradient chromatography, 
respectively. 

In contrast to the fact that the abstract flow in gradient chromatogra- 
phy ( I )  can be adequately represented by Eq. (1) rather than Eq. (lo'), the 
actual flow in isocratic (or stepwise) chromatography (I) can be 
adequately represented by Eq. (38') rather than Eq. (44'). 

DISCUSSION 

(A) Universal Continuity Equation, Eq. (21) or (21') 

The universal continuity equation, Eq. (21) or (21'). is valid for any 
quasi-static chromatography. However, the equation only represents the 
conservation of the amount of solute molecules in a vertical section of the 
column. Equation (21) or (21') can, in general, be transformed to an 
equation that causally describes the chromatographic process. Thus, with 
gradient chromatography, the transformation is carried out by introduc- 
ing both Eqs. (19) and (20), and, with isocratic (or stepwise) chromatogra- 
phy, by introducing Eq. (37). 
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FURTHER THEORY OF GRADIENT CHROMATOGRAPHY 465 

(6) Initial Chromatographic Condition, Eq. (1 1) 

The initial chromatographic condition, Eq. (1 1) (which is equivalent 
with Eq. 22 representing the initial location of the sample molecules on 
the column), is valid only when the concentration gradient is previously 
formed over longitudinal column positions where the molecules are 
initially located. In most actual cases, however, the sample molecules 
dissolved in a solvent (in which the initial concentration, mi", of the 
gradient element is also dissolved) is loaded on the column, and the 
molecules flow into the column inlet; this is followed by a rinsing process 
carried out by using the same solvent as that of the sample solution. 
During this process, virtually all the molecules under consideration stay 
in the stationary phase in the vicinity of the column inlet, usually forming 
a uniform band; this is because, under the experimental condition as 
such, the molecules have very low B values. The concentration gradient 
now flows into the column, and the gradient begins to pass through the 
position of the molecular band. In this instant, the B values are usually 
still very low. As a result, the formation of the concentration gradient, in 
fact, occurs over the longitudinal column positions where the sample 
molecules are located conserving the initial state. This means that Eq. 11 
is even valid in the actual case. (It should be noted, however, that, in the 
present theory, account is not taken of mutual molecular interactions that 
can be expected to take place within the initial molecular band. For the 
mutual molecular interactions, cf. Ref. 2.) 

It should be emphasized that another expression, Eq. 15, of the initial 
chromatographic condition does not generally represent the density of 
the sample molecules in the mobile phase existing just over the 
longitudinal column positions where the molecular band is present. In 
fact, Eq. (15) represents the molecular distribution occurring on the m 
axis of Fig. 1 whereas Eq. ( 1  1) represents that occurring on the s axis (or 
the L' axis of Fig. 1 in Ref. 1, Appendix 11). The intuitive understanding of 
the physical meaning of Eq. (15) is difficult except when the function 
C,,(m) can be represented by using a delta function (Eq. 16). 

(C) Relationship with the Experiment 

In an earlier paper (3), the earlier theory (1 )  was experimentally 
confirmed for hydroxyapatite (HA) chromatography with good fits 
between the theory and the experiment. As far as dependences of the 
width (standard deviation, a) of the chromatographic peak upon both L' 
and g' are concerned, however, the theory did not completely explain the 
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experiment: whereas the theory ( I )  predicts that the dependences be 
quantitatively explained by using a constant 0 value, the experiment 
showed that 0 increases slightly with a decrease ing’ (see Fig. 3b in Ref. 3, 
where the parameter Oo which is proportional to 0 is considered instead 
of 0). Further, the theory predicts that, with small sample loads, the 
shape of a chromatographic peak be almost Gaussian. However, the 
experimental chromatogram of a single component is often slightly 
asymmetrical with a slower decrease in height on the right-hand side of 
the pattern than on the other side (for instances, see Fig. 4 in Ref. 4 and 
Fig. 2 in Ref. 5). (To be precise, the theoretical chromatogram is very 
slightly asymmetrical with a slower decrease in height on the left-hand 
side of the pattern than on the other side. The asymmetry is negligible 
from a practical point of view, however; for instance, see Fig. 1 in Ref. 6 .  
For the mathematical procedure for the Gaussian approximation of the 
theoretical chromatogram, see Refs. I, 6, and 7.) 

It can be suggested that the slight difference between the theoretical 
prediction ( I )  and the experimental results (3-5) arises at least partially 
from the fact that Assumption (a) in the Theoretical Section E involved in 
the earlier theory (1) is not exact enough. As far as HA chromatography 
of macromolecules is concerned (as is the case with Refs. 3-9,  it can be 
suggested that, in contrast to Assumption (a), the longitudinal diffusion 
of the gradient element (competing ions in the experiments in Refs. 3-5) 
in the column occurs more slowly than the sample molecules; the 
longitudinal diffusion effect provoked by the first type of flow hetero- 
geneity (see Ref. I ,  Appendix I) is less important with competing ions 
than with sample molecules. Competing ions with a small particle size 
would have a large thermal Brownian diffusion constant, thus repeating 
frequent reciprocal motions between neighboring microcolumns (with a 
finite cross-sectional area of the order of magnitude of the interdistances 
among packed particles in the total column). As a result, the longitudinal 
diffusion effect occurring directly caused by the first type of flow 
heterogeneity would decrease (cf. Ref. I ,  Appendix I). With macromole- 
cules with a large particle size and a small thermal Brownian diffusion 
constant, the longitudinal diffusion effect would not decrease so much 
due to reciprocal motions between neighboring microcolumns since the 
motions would be repeated less frequently. In general, the longitudinal 
diffusion effect directly provoked by thermal Brownian diffusion occur- 
ring in the mobile phase can be assumed to be negligible. 

In Ref. I ,  Appendix I, the quasi-static chromatography was defined as 
chromatography in which the longitudinal diffusion that is directZy 
provoked by the first type of flow heterogeneity in the carrier liquid is of 
overwhelming importance. As a result, the longitudinal diffusion of the 
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sample molecules occurs in parallel with that of the gradient element in 
the column both directly provoked by the first type of flow heterogeneity 
in the carrier liquid (Assumption a in Theoretical Section E). In the 
present work the definition of quasi-static chromatography is extended to 
the case when the reciprocal Brownian motion occurring between 
neighboring microcolumns contributes effectively to the longitudinal 
diffusion in  the column; the contribution is negative, and it occurs 
differently between the gradient element and the sample molecules.* 

(D) Looking Back upon the Earlier Developments of the Theory of 
Gradient Chromatography 

The first theoretical investigation on gradient chromatography goes 
back to 17 years ago, when it was carried out for the purpose of 
elucidating the mechanism of HA gradient chromatography (8.9). In this 
investigation a series of a finite number of vertical sections with a finite 
thickness was used as a model representing a chromatographic column, 
and the behavior of sample molecules on the column was studied only 
numerically with the aid of a competition model occurring between the 
gradient element and the sample molecules for adsorption onto the HA 
crystals packed in the column (8, 9). 

Over 13 years ago, a combined form of both Eqs. (28) and (32) was first 
derived on the basis of a primitive consideration on the chromatographic 
mechanism (Eq. 12 in Ref. 10 or Eq. 1 in Ref. 11). 

A fundamental study of gradient chromatography that directly leads to 
the present work began 6 years ago, again in relationship with HA 
chromatography (12). It should be recalled that, in Ref. 12, the same 
theoretical expression of a chromatogram as that derived in this paper 
(Eqs. 5 and 18, or Eqs. 27-29) was derived without using the fundamental 
continuity equation, Eq. (l), at all (see Eqs. 34 and 36 in Ref. 12). 

*In Ref. 1. Appendix 1, we mentioned the longitudinal diffusion that is provoked in 
association with the reciprocal motion of molecules occurring between neighboring 
microcolumns. and that is provoked by a vertical motion of molecules within a 
microcolumn. As far as the former diffusion is concerned. the phenomenon is apparent, 
occurring at the expense of the diffusion directly provoked by the first type of flow 
heterogeneity in the carrier liquid. In other words. the apparent diffusion (or the reciprocal 
motion itself occurring between neighboring microcolumns) contributes negatively to the 
diffusion that is directly provoked by the first type of flow heterogeneity. Similarly, the 
longitudinal diffusion provoked in association with a vertical motion of molecules within a 
microcolumn contributes negatively to the diffusion that is directly provoked by the second 
type of flow heterogeneity in the carrier liquid (see Ref. 1. Appendix 1). 
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APPENDIX 

KAWASAKI 

The migration of solute molecules in a microcolumn, in which no 
longitudinal diffusion occurs, can be represented as 

____) 

1 - B’(m,)  a c’ C’ + - = o  1 ds, 
div,, 

Equation (Al) has a general solution: 

If a molecular band with an infinitesimal width occurs, C’ in Eq. (A2) 
should be represented as a delta function; this leads to both Eqs. (32) and 
(28’). 

SYMBOLS 

m mean concentration of the gradient element in the 
mobile phase within any infinitesimal vertical section 
of the column. In some instances, m especially repre- 
sents the mean concentration in the mobile phase 
within the last infinitesimal vertical section at the outlet 
of the column, or the solution that has just been eluted 
out of the column. (To be precise, the terminology 
“concentration” should be replaced by “concentration 
or activity.” For the sake of simplicity, similar abbrevia- 
tions will be used for any similar concepts appearing in 
any part of this paper.) 
concentration of the gradient element in the mobile 
phase within the first infinitesimal vertical section at 
the inlet of the column 
concentration of the gradient element at the beginning 
of the concentration gradient flowing initially into the 
first infinitesimal vertical section at the inlet of the 
column 
concentration of the gradient element in the mobile 
phase within any infinitesimal vertical section of a 
microcolumn. In some instances, m, especially repre- 
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r 

r‘ 
r 

L‘ 

sents the concentration in the mobile phase within the 
last infinitesimal vertical section at the outlet of the 
microcolumn. mh also represents the concentration of 
the gradient element occurring within the vertical 
section of the microcolumn in which the infinitesimal 
band of sample molecules (of the chromatographic 
component under consideration) exists 
parameter with a dimension of concentration repre- 
senting “time” in the second point of view on gradient 
chromatography; in the first point of view, s represents 
the product of g’ and L’. Cf. the legend of Fig. I 
parameter with a dimension of concentration concern- 
ing a microcolumn. In the second point of view on 
gradient chromatography, s represents “time” elapsing 
in the microcolumn, and, in the first point of view, the 
product of g’/6h and Li-Fh, or g’ and L;. In some 
instances when LL. 6h represents the longitudinal 
position of the infinitesimal band of sample molecules 
(of the chromatographic component under considera- 
tion) occurring in the microcolumn, (sh/g’) .6h also 
represents the position of the band in the microcolumn 
[since L; * 6h = (sh/g‘) .6h; Eq. 331 
parameter with a dimension of concentration. r/g‘ (with 
dimensions of volume) represents the longitudinal 
position on the column expressed as the sum of 
interstitial volumes involved between the column inlet 
and the longitudinal position under consideration 
(since r/g’ = L‘; Eq. 19) 
parameter equivalent with r 
parameter with a dimension of concentration concern- 
ing a microcolumn. ( i /g ’ ) .6h  (with dimensions of 
volume) represents the longitudinal position of the 
infinitesimal band of sample molecules (of the chroma- 
tographic component under consideration) occurring 
in the microcolumn; this is expressed as the sum of 
interstitial volumes involved between the inlet of the 
microcolumn and the longitudinal position under 
consideration 
longitudinal position on the column expressed as the 
sum of interstitial volumes involved between the col- 
umn inlet and the longitudinal position under con- 
sideration. In some instances, L’ especially represents 
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L“ 
L; 

W 

V 
6h 

g‘ 

0 

C 

the total column “length,” i.e., the total interstitial 
volumes involved in the column 
parameter equivalent with L‘ 
parameter with dimensions of volume concerning a 
microcolumn. L; 6h represents the longitudinal posi- 
tion on the microcolumn expressed as the sum of 
interstitial volumes involved between the inlet of the 
microcolumn and the longitudinal position under 
consideration. In some instances, L; .  6h especially 
represents the total “length of the microcolumn, i.e., 
the total interstitial volumes involved in the micro- 
column. L; .6h also represents the longitudinal position 
of the infinitesimal band of sample molecules (of the 
chromatographic component under consideration) 
occurring in the microcolumn 
distance between the column inlet and a mean position 
of the band of the sample molecules (of the chroma- 
tographic component under consideration) migrating 
on the column; this is expressed as the sum of 
interstitial volumes involved between the column inlet 
and the longitudinal mean position of the band under 
consideration 
elution volume 
ratio of the volume of the liquid that flows into (and out 
of) a microcolumn to the volume that flows into (and 
out of) the actual whole column. The microcolumn is 
defined in such a way that the volume of the liquid that 
flows into (and out of) any microcolumn is the same 
within any unit time interval ( I ) .  This means that the 6h 
value for any microcolumn is equal to one another 
positive constant with a dimension of concentration/ 
volume representing the slope of the concentration 
gradient in the column. This is expressed as the 
increase in the concentration per unit “length” of the 
column, measured from the outlet to the inlet; the 
column “length” is expressed in units of volume. g’/Sh 
represents the slope of the concentration gradient 
occurring in a microcolumn 
positive parameter with dimensions of volume measur- 
ing the longitudinal diffusion in the column 
density of sample molecules (of the chromatographic 
component under consideration) in the mobile phase 
in the column 
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initial density of sample molecules (of the chromato- 
graphic component under consideration) in the mobile 
phase in the column 
density of sample molecules (of the chromatographic 
component under consideration) in the mobile phase 
in a microcolumn 
density of sample molecules (of the chromatographic 
component under consideration) in the stationary 
phase in a microcolumn 
total density of sample molecules (of the chromato- 
graphic component under consideration) in the vertical 
section of the column; in this concept, the idea of the 
existences of the mobile and the stationary phase is not 
involved 
initial total density of sample molecules (of the chroma- 
tographic component under consideration) in the 
vertical section of the column 
parameter defined by Eq. (7) 
common symbol representing C,  a, and F 
partition of sample molecules (of the chromatographic 
component under consideration) in the mobile phase 
in a vertical column section, or the ratio of the amount 
of molecules in the mobile phase to the total amount in 
that column section. B, which is not accompanied by 
parentheses, is used in the case when B is constant 
partition of sample molecules (of the chromatographic 
component under consideration) in the mobile phase 
in a vertical section of a microcolumn 
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