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Further Investigations on the General Theory of
Quasi-Static Linear Gradient Chromatography

TSUTOMU KAWASAKI

CHROMATOGRAPHIC RESEARCH LABORATORY
KOKEN CO. LTD.
3-5-18 SHIMO-OCHIAIL, SHINJUKU-KU. TOKYO 161. JAPAN

Abstract

The earlier theory of quasi-static linear gradient chromatography is still
generalized. The present theory is valid whatever may be the initial location of the
sample molecules on the column, and the condition imposed upon the quasi-
static chromatography is less severe in this theory than earlier. The earlier theory
represents a special case of the present theory. The universal continuity equation
for any quasi-static chromatography is derived, from which the continuity
equation that causally describes the chromatographic process can be derived for
both gradient and isocratic (or stepwise) chromatographies.

INTRODUCTION

Earlier (/) a general theory of quasi-static linear gradient chroma-
tography was developed. However, the theory was only valid for the case
when a molecular band with an infinitesimal width is formed initially at
the inlet of the column (f). In the present work, the fundamental
continuity equation of gradient chromatography that appeared in Ref. /
is studied in detail. It is shown that the continuity equation can be solved
under a general initial condition. The present theory is valid whatever
may be the initial location of the sample molecules on the column, and
the condition imposed upon the quasi-static chromatography is less
severe in this theory than earlier. The earlier theory (I) represents a
special case of the present theory.

The universal continuity equation for any quasi-static chromatography
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is derived, which only represents the conservation of the amount of solute
molecules in a vertical column section. From the universal equation,
the continuity equation that causally describes the chromatographic
process can be derived for both gradient and isocratic (or stepwise)
chromatographies.

Physical meanings of any symbols involved in the equations are given
at the end of this paper.

THEORETICAL

(A) General Consideration on the Fundamental Continuity Equation
of Gradient Chromatography

The fundamental continuity equation of gradient chromatography (Eq.
21 in Ref. I) can be written as

. [1-B(s,m),. g'© C :| aC _
d“’"‘[ Bom) C Bom) T Bem) T e 20 W

A proof is given below that a function r(s, m) exists which fulfills the

relationship
or or
=1 ={-=—1| = B, 2
[as]m [8m] (5. m) (2)

s

and, in Section D, it will be shown that B can, in general, be represented
as a function of r as

B(s,m) = B(r) (3)

Proof of Eq. (2). In general, it is possible to find a function r(s, m) that
fulfills only the right-hand side equality in Eq. (2). Similarly, it is possible
to find another function r(s, m) that fulfills only the equality between the
extreme left-hand side term and the extreme right-hand side term in Eq.
(2). It is therefore sufficient to show that the left-hand side equality in Eq.
(2) is generally fulfilled. Figure 1 illustrates another expression of Fig. 1 in
Ref. I, Appendix IlI. Thus, in Fig. 1, the abscissa L' in Fig. 1 of Ref. I is
transformed to s, which is defined as s = g’L’ on the basis of the first point
of view on gradient chromatography (see Ref. I, Appendix II). It can be
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m-Mmin

FiG. 1. Schematic representation of the principle of gradient chromatography. s in the

abscissa s represents the relative longitudinal column position, g'L’ (first point of view)

whereas s in the ordinate m represents “time” (second point of view). Cf. Fig. 1 in Ref. /1,
Appendix IL

seen that Fig. 1 is symmetric between the s and the m axis. This means
that the expression (0r/0m), (which is based on the first point of view) is
equal to the other expression (0r/0s),, (which is based on the second point
of view on gradient chromatography).

From both Egs. (2) and (3)

dr/B(r) = ds + dm (4)

is derived. Assuming that, when both s = 0 and m = m,,, then r = 0, Eq.
(4) can be integrated to give

~dr =s+m—my (5)
o B(r)
Introducing the parameters
Q = C/B(s, m) (6)

and
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(N

Eq. (1) can be rewritten as

Lol 15 = 4

in which, if C, §, and F are denoted by a common symbol f, f is
considered to be a function of s and m (f = f(s, m)). Due to Eq. (5),
however, it is possible to consider that f is a function of s and r
(f = fIs, r(s, m)]) from which it follows that

2160+

and that

o] = L)L) = 137150 g

where both Egs. (2) and (3) have been used.
By replacing f with C, ©, and F, and applying both Egs. (8) and (9) to
Eq. (1),

’Q _ 90

§0 5 = T o (10)
or
div,(2 — g'® grad, 2) + —aa—? =0 (10")

can be derived. Under a general initial condition:
Q(s—0,7) = Qy(r) (11)

where Q,(r) is any function, Eq. (10) or (10’) has a solution:
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(r—x—r')l

Q(s,r) = %EJT'QE f_: Qq(r')e  *O 4y (12)
Especially when
Q(r) = 8(r) (13)
Eq. (12) reduces to
1 _r=s)?
Qs,r)y = — e %O (14)

vV 4ng'Os

By using Egs. (2), (3), and (6), Eq. (11) can be rewritten as

Cls—0.m) = Co(m) = Qu(r) - [B()] a0 = Qo) - [3";] (15)
50

and Eq. (13) can be rewritten as
Cy(m) = 8(m — m;,) (16)

since when s = r = 0, then m = m;, (Eq. 5). By applying both Egs. (3) and
(6) to Eqgs. (12) and (14),

(r‘s—r’)2

B ® T e,
C(s,m) = Tﬂ‘%@f f_w Qure % dr (17)
and
.  r=s)?
Cls,m)y =B __ e (18)

v 4ng'Os

can be derived. Equation (17) is a solution to Eq. (1) obtained under the
initial condition given by Eq. (15) or (11); Eq. (18) is a solution obtained
when the function Cy(m) or Qq(r) has a special form represented by Eq.
(16) or (13). (It will be understood later that the initial condition
represented in the form of Eq. 15 is not convenient for practical purposes.
The initial condition given in the form of Eq. 11 or that given in the form
of Eq. 22 is adequate. See Section C and Discussion Section B.) With Eq.
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(5), both Egs. (17) and (18) represent C as a function of both s and m by
using r as an intermediate parameter.
(B) Universal Continuity Equation for Any
Quasi-Static Chromatography
Introducing transformations:

L' =r/g (19)
and

W=s/g (20)
Eg. (10) or (10') can be rewritten as

a’Q 80 oN

oL ~or T ow D
or
div;. (Q ® grad;. Q) + g; 0 21"
Equations (11)-(14) become
UW—0,L") = QL") (22)
L' -Ww-1)2
aw.L)=——L—["aune " ar @
’ Vanew o
QL") = &(L") (24)
and
(L-w?
1 T 4ew
QW,L')= ——¢ (25)

\VA4nOw

respectively.
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It can be considered that, in Eqs. (19)~(25), L’ represents the general
longitudinal position on the column expressed as the sum of interstitial
volumes involved between the column inlet and the column position
under consideration.

W has a physical meaning of the longitudinal column position of the
molecular band with an infinitesimal width occurring, provided that an
infinitesimal molecular band was initially introduced at the inlet of the
column and that no longitudinal diffusion occurs on the column (© = 0).
In other words, W represents the distance (expressed in units of volume)
between the column inlet and the position of the infinitesimal molecular
band. In the actual case when the initial molecular band has a finite
width and when molecular diffusion occurs on the column, the position
W would always be involved within the range over which the band is
extending. This means that W, in general, represents the distance between
the column inlet and a mean position of the molecular band migrating
on the column. W therefore increases monotonically with a lapse of
time.

It can be considered that Eq. (21) or (21') represents a universal
continuity equation for any quasi-static chromatography including both
gradient and isocratic (or stepwise) chromatographies. It should be
pointed out, however, that, although W increases with time (see above),
how W increases with time is not at all described by Eq. (21) or (21"). This
means that, although the conservation of the amount of solute molecules
in a vertical column section can be represented by Eq. (21) or (21'), it is
impossible in principle for any chromatographic process to be causally
described by Eq. (21) or (21"). (For further arguments, see Section F and
Discussion Section A.)

{C) Interpretation of the Parameter r and the Physical Meaning of
the Initial Condition, Eq. (11)

It can be interpreted that the parameter 7 that has finally been defined
by Eq. (5) represents the relative longitudinal position on the column
since 7 is proportional to L' (Eq. (19). This means that Eq. (11) (which is
equivalent with Eq. 22) represents the initial location of the sample
molecules on the column; in this concept, the idea of the existences of the
mobile and the staionary phase is not involved, and the total molecular
density Q is considered instead of the density C occurring in the mobile
phase. It is L") or Q(r), rather than Cy(m), that can experimentally be
realized. Therefore, on treating the fundamental continuity equation, Eq.
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(1), it is convenient to use the initial condition given in the form of Eq.
(11) rather than that given in the form of Eq. (15). (For further arguments,
see Discussion Section B.)

(D) Consideration on Eq. (3)

We show below that Eq. (3) is valid with any gradient chromatography.
Thus, the parameter r represents the longitudinal position on the column
(Section C), and it can be considered that the property of a longitudinal
column position is characterized by the mean concentration, m, of the
gradient element (see Ref. 1) existing within the vertical section at that
position. This means that r is a function of m. The property of the
position r also changes with time or “time” s (second point of view). In
fact, if the position r at which m is constant is pursued with a lapse of time
or “time” s (the position r migrates on the column with a velocity equal to
the migration velocity of the gradient itself), then it will be observed that
the variance in concentration of the gradient element around the mean
value m (within the vertical column section at the position r) increases
because of the longitudinal diffusion occurring in the column; this will,
gradually, change the property of the position r. This means that r also
depends upon s, thus leading to r = r(s, m) or Eq. (3).

It should be recalled (1) that the concentration gradient is defined as
the gradient obtained by connecting m values occurring within respective
column sections, which is linear with linear gradient chromatography.
The linear concentration gradient is virtually undisturbed by the
longitudinal diffusion of the gradient element in the column since the
diffusion effect is canceled out among different column sections (/).

{E) Relationship with the Earlier Theory (1)

Earlier (/) it was shown that (a) if the longitudinal diffusion of the
sample molecules occurs in parallel with that of the gradient element in
the column, directly provoked by the first type of flow heterogeneity in the
carrier liquid (Ref. I, Appendix 1), and (b) if a band of the sample
molecules with an infinitesimal width is formed initially at the inlet of the
column,* then the function B(s, m) is characterized (see Eqs. 25-27 in Ref.
1) by

*For the other assumptions, see the earlier paper (1).
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B(s, m) = B'|m;,(s, m)] (26)
m=m,+r(m)—s 27
and
. (" _Bmy)
Fomy = [ 2 e am, (28)

Under the initial condition given by both Egs. (15) and (16) (i.e., that
given by both Egs. 11 and 13), Eq. (1) has a solution:

\
Br m _ (m—my)
(m)

4¢'Os (29
V4ng'Os )

(see Eq. 36 in Ref. 1). With both Eqs. (27) and (28), Eq. (29) represents C as
a function of both s and m by using m, as an intermediate parameter (see
Ref. 1).

The purpose of this section is to show 1) that Eq. (26) is generally valid
even in the absence of both Assumptions (a) and (b)., and that Eq. (26) is
equivalent with Eq. (3); 2) the function B(s, m) can be characterized by
Egs. (26)-(28) only if Assumption (a) is fulfilled, i.e., independently of the
initial chromatographic condition; and 3) the argument in this section is
involved in the argument made in Section A. This means that Eq. (29)
represents a special case of Eq. (18), and that, under the general initial
condition given by Eq. (15) (i.e., that given by Eq. 11), Eq. (29) can be
extended to have a general expression:

C(s,m) =

(m—m}t—r')2

Cls,m) = —Bma) fw Qe *% a4 (30)

\V 4ng'Os

(cf. Eq. 17).

Proof that Eq. (26) is generally valid in the absence of both Assumption (a)
and (b), and that Eq. (26) is equivalent with Eq. (3). Let us recall the proof of
Eq. (26) (i.e., Eq. 25 in Ref. ) given in the paragraph “Proof. (Step 1)” in
Theoretical Section B of Ref. /. The key point of this proof can be stated
in the following way. Thus, a molecular band with an infinitesimal width
migrates in each microcolumn (for microcolumn, see Ref. 1), and the
longitudinal positions of infinitesimal bands belonging in different
microcolumns are always different from one another on the total column.
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As a result, the partition, B, in solution of sample molecules occurring
within a vertical section (with an infinitesimal thickness) of the total
column represents the partition, B', occurring in the vertical section of
one of the microcolumns; the vertical section of the microcolumn under
consideration is part of the vertical section of the total column. In the
vertical section of the microcolumn the concentration of the gradient
element is m, while the mean concentration of the gradient element in the
vertical section of the total column is m. Equation (26) is fulfilled because
the relationship between m, and m depends upon “time” s.

In Ref. ] it was stated, however, that the situation where an infinite-
simal molecular band is present in each microcolumn and where the
phases of the bands belonging in different microcolumns are different
from one another (except just at the beginning of chromatography) is
realizable only if the width of the initial molecular band introduced at
the inlet of the column is infinitesimal (Assumption b). This is because,
due to its physical meaning, the cross-sectional area of a microcolumn
should be finite with a diameter of the order of magnitude of the
interdistances among packed particles in the column (see Ref. I).

Provided the cross-sectional area of any microcolumn is infinitesimal,
however, it would, in general, be possible to fill the interior space of the
total column with microcolumns in such a way that, at any instant, each
microcolumn captures only solute molecules (with infinitesimal dimen-
sions) existing within an infinitesimal space in the total column. The
other part of the microcolumn under consideration runs in the interior of
the total column while avoiding the spaces filled with the other solute
particles. This means that, independently of the shape of the molecular
band migrating in the total column (therefore, independently of the
initial location of the molecules on the column), the total column can be
divided into an infinite number of microcolumns in such a way that the
molecular bands with an infinitesimal width are distributed among the
respective microcolumns and that the phases of infinitesimal bands
belonging in different microcolumns are always different from one
another, at least, by an infinitesimal magnitude. It would, in general, be
possible to hypothesize that longitudinal positions of any solute particles
(with infinitesimal dimensions) on the total column are different from
one another, at least, by an infinitesimal magnitude. [This hypothesis is
related to the theorem of the continuity of the real numbers or
Dedekind’s theorem. The hypothesis that a microcolumn can capture
only solute molecules existing within an infinitesimal space in the total
column and that the other part of the microcolumn can run in the
interior of the total column while avoiding the spaces filled with the other
solute particles (see above) is also related to Dedekind’s theorem.]
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The concept of the microcolumn with an infinitesimal cross section is
quite general. [This can be applied more widely than the concept of the
microcolumn with a finite cross-sectional area of the order of magnitude
of the interdistances among packed particles in the column (see above).]
This means that Eq. (26) is fulfilled quite generally, and that Eq. (26) is
equivalent with Eq. (3), thus leading to

B'(my) = B(r) (31)

Proof that the function B(s, m) can be characterized by Egs. (26)-(28) only if
Assumption (a) is fulfilled independently of the initial chromatographic
condition. Due to Assumption (a), the migration of a molecular band with
an infinitesimal width occurring in a microcolumn can be described (see
Appendix) by

s, = F (m;) (32)
where 7 (m,) is here defined as

. — B,(m)\) '
F(m;) = T=B'(m) dm, (28"
and, on the basis of the first point of view on gradient chromatography, s,
can be represented as

t

5y = gX LisA =g'L!, (33)

In Eqgs. (32), (28'), and (33), L;dA or (s,/g') - 8\ has a physical meaning of
the position of the infinitesimal molecular band on the microcolumn,
and m, represents the concentration of the gradient element at the
position where the infinitesimal band exists. [ (m,)/g'] - 8\ represents the
position of the band as a function of m, (Eq. 32).

Since s, and s can be written (1) as

S5 = My — M, (34)
and
s=mg—m (35)

respectively, then, by substituting Eq. (32) into Eq. (34), and eliminating
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m, between Egs. (34) and (35), Eq. (27) can be derived. (For Eq. 35, cf. Fig.
1)

The integration constant in Eq. (28') can be determined in order for Eq.
(28") to be fulfilled under a condition where a molecular band with an
infinitesimal width is formed at the inlet of the total column initially or at
‘time” s = 0 (second point of view). Thus, both Egs. (34) and (35) show
that the concentration, s, of the gradient element in the first infinite-
simal vertical section at the inlet of the total column is always
homogeneous (cf. Fig. 1). Therefore, writing m,, for the m, value occurring
at “time” s = 0, it can be stated that, when s = 0, then an infinitesimal
molecular band is formed at the inlets, (#/g')-8A = 0, of the respective
microcolumns where m, = m = m,,. This means that, when m, = m,,,
then 7 = 0, thus leading to Eq. (28).

Hence, both Egs. (27) and (28) have been derived by using only
Assumption (a); this means that the function B(s, m) can be characterized
by Eqgs. (26)-(28) only if Assumption (a) is fulfilled.

Proof that the argument in this Section is involved in the argument made in
Section A. By using Eq. (31) it is easy to derive, from Eqgs. (26)-(28), Egs.
(2)-(5), and the relationship,

r [my(s, m)| = r(s, m) (36)

Further, by applying Eqgs. (27), (31), and (36) to Egs. (17) and (18), Egs.
(30) and (29) can be derived, respectively.

The argument in this section is involved in the argument made in
Section A since an additional assumption (Assumption a) is present only
in the argument in this section.

(F) Relationship with Isocratic (or Stepwise) Chromatography

With isocratic (or stepwise) chromatography, introducing a trans-
formation:

W =BV (37)

where B is constant, the universal continuity equation, Eq. (21) or (21'),
can be rewritten as

2’Q o | dn

OB =Bor T o

(38)
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or

div,. (B — OB grad;. ) + 3‘; 0 (38")

(Equation 38’ represents the same equation as Eq. 4 in Ref. /.) Under a
general initial condition:

QUV—-0,L") = QL") (39)

Eq. (38) or (38’) has a solution:

_(L-BY-LY -Bv-17)2
Q(V,L’) - ﬁ_@TJ- Qo(L") T 4eBV dL// (40)
Especially when
QL") = (L") (41)
Eq. (40) reduces to
I _w-svy
QWV,L')= ————¢ @8 (42)

V4nOBV
Equations (38), (38"), (39)-(42) correspond to Egs. (10), (10), (11)-(14) for
gradient chromatography, respectively.
Further, introducing the parameter

C=Q-B (43)

Eq. (38) or (38") can be rewritten as

=B —+— 4
S T T 17 (44)
or
oC ,
div;. (BC OB grad; C) + —— 14 =0 (44"

Equations (39)-(42) become
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C(V=0,L") = Cy(L")Y = QL") B (45)
(L'-BV~1")2
CV,L") = —————-f Cy(L” A ) S
( ) Y 1% ol )9

/‘——‘ &-By-1y?
4n®Vf Qo(L”)e T seBv dL” (46)

CyL'y=8L")'B 47
and
B (L' -BV)2
V’L’ = T 48BV
C( ) eV e (48)

respectively. [Equations 46 and 48 can also be obtained by replacing Q
in Eqs. 40 and 42 by C/B (see Eq. 43), respectively.] Equations (44'),
(45)-(48) correspond to Egs. (1), (15)-(18) for gradient chromatography,
respectively.

In contrast to the fact that the abstract flow in gradient chromatogra-
phy (I) can be adequately represented by Eq. (1) rather than Eq. (10"), the
actual flow in isocratic (or stepwise) chromatography (/) can be
adequately represented by Eq. (38') rather than Eq. (44').

DISCUSSION

(A) Universal Continuity Equation, Eq. (21) or (21')

The universal continuity equation, Eq. (21) or (21'), is valid for any
quasi-static chromatography. However, the equation only represents the
conservation of the amount of solute molecules in a vertical section of the
column. Equation (21) or (21') can, in general, be transformed to an
equation that causally describes the chromatographic process. Thus, with
gradient chromatography, the transformation is carried out by introduc-
ing both Egs. (19) and (20), and, with isocratic (or stepwise) chromatogra-
phy, by introducing Eq. (37).
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(B) Initial Chromatographic Condition, Eq. (11)

The initial chromatographic condition, Eq. (11) (which is equivalent
with Eq. 22 representing the initial location of the sample molecules on
the column), is valid only when the concentration gradient is previously
formed over longitudinal column positions where the molecules are
initially located. In most actual cases, however, the sample molecules
dissolved in a solvent (in which the initial concentration, m,, of the
gradient element is also dissolved) is loaded on the column, and the
molecules flow into the column inlet; this is followed by a rinsing process
carried out by using the same solvent as that of the sample solution.
During this process, virtually all the molecules under consideration stay
in the stationary phase in the vicinity of the column inlet, usually forming
a uniform band; this is because, under the experimental condition as
such, the molecules have very low B values. The concentration gradient
now flows into the column, and the gradient begins to pass through the
position of the molecular band. In this instant, the B values are usually
still very low. As a result, the formation of the concentration gradient, in
fact, occurs over the longitudinal column positions where the sample
molecules are located conserving the initial state. This means that Eq. 11
is even valid in the actual case. (It should be noted, however, that, in the
present theory, account is not taken of mutual molecular interactions that
can be expected to take place within the initial molecular band. For the
mutual molecular interactions, cf. Ref. 2.)

It should be emphasized that another expression, Eq. 15, of the initial
chromatographic condition does not generally represent the density of
the sample molecules in the mobile phase existing just over the
longitudinal column positions where the molecular band is present. In
fact, Eq. (15) represents the molecular distribution occurring on the m
axis of Fig. 1 whereas Eq. (11) represents that occurring on the s axis (or
the L' axis of Fig. 1 in Ref. /, Appendix II). The intuitive understanding of
the physical meaning of Eq. (15) is difficult except when the function
Cy(m) can be represented by using a delta function (Eq. 16).

(C) Relationship with the Experiment

In an earlier paper (3), the earlier theory (I) was experimentally
confirmed for hydroxyapatite (HA) chromatography with good fits
between the theory and the experiment. As far as dependences of the
width (standard deviation, o) of the chromatographic peak upon both L’
and g’ are concerned, however, the theory did not completely explain the
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experiment: whereas the theory (/) predicts that the dependences be
quantitatively explained by using a constant ©® value, the experiment
showed that © increases slightly with a decrease in g’ (see Fig. 3b in Ref. 3,
where the parameter ®, which is proportional to © is considered instead
of ®). Further, the theory predicts that, with small sample loads, the
shape of a chromatographic peak be almost Gaussian. However, the
experimental chromatogram of a single component is often slightly
asymmetrical with a slower decrease in height on the right-hand side of
the pattern than on the other side (for instances, see Fig. 4 in Ref. 4 and
Fig. 2 in Ref. 5). (To be precise, the theoretical chromatogram is very
slightly asymmetrical with a slower decrease in height on the left-hand
side of the pattern than on the other side. The asymmetry is negligible
from a practical point of view, however; for instance, see Fig. 1 in Ref. 6.
For the mathematical procedure for the Gaussian approximation of the
theoretical chromatogram, see Refs. /, 6, and 7.)

It can be suggested that the slight difference between the theoretical
prediction (/) and the experimental results (3-5) arises at least partially
from the fact that Assumption (a) in the Theoretical Section E involved in
the earlier theory (/) is not exact enough. As far as HA chromatography
of macromolecules is concerned (as is the case with Refs. 3-5), it can be
suggested that, in contrast to Assumption (a), the longitudinal diffusion
of the gradient element (competing ions in the experiments in Refs. 3-5)
in the column occurs more slowly than the sample molecules; the
longitudinal diffusion effect provoked by the first type of flow hetero-
geneity (see Ref. I, Appendix I) is less important with competing ions
than with sample molecules. Competing ions with a small particle size
would have a large thermal Brownian diffusion constant, thus repeating
frequent reciprocal motions between neighboring microcolumns (with a
finite cross-sectional area of the order of magnitude of the interdistances
among packed particles in the total column). As a result, the longitudinal
diffusion effect occurring directly caused by the first type of flow
heterogeneity would decrease (cf. Ref. I, Appendix I). With macromole-
cules with a large particle size and a small thermal Brownian diffusion
constant, the longitudinal diffusion effect would not decrease so much
due to reciprocal motions between neighboring microcolumns since the
motions would be repeated less frequently. In general, the longitudinal
diffusion effect directly provoked by thermal Brownian diffusion occur-
ring in the mobile phase can be assumed to be negligible.

In Ref. I, Appendix I, the quasi-static chromatography was defined as
chromatography in which the longitudinal diffusion that is directly
provoked by the first type of flow heterogeneity in the carrier liquid is of
overwhelming importance. As a result, the longitudinal diffusion of the
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sample molecules occurs in parallel with that of the gradient element in
the column both directly provoked by the first type of flow heterogeneity
in the carrier liquid (Assumption a in Theoretical Section E). In the
present work the definition of quasi-static chromatography is extended to
the case when the reciprocal Brownian motion occurring between
neighboring microcolumns contributes effectively to the longitudinal
diffusion in the column; the contribution is negative, and it occurs
differently between the gradient element and the sample molecules.*

(D) Looking Back upon the Earlier Developments of the Theory of
Gradient Chromatography

The first theoretical investigation on gradient chromatography goes
back to 17 years ago, when it was carried out for the purpose of
elucidating the mechanism of HA gradient chromatography (8. 9). In this
investigation a series of a finite number of vertical sections with a finite
thickness was used as a model representing a chromatographic column,
and the behavior of sample molecules on the column was studied only
numerically with the aid of a competition model occurring between the
gradient element and the sample molecules for adsorption onto the HA
crystals packed in the column (8, 9).

Over 13 years ago, a combined form of both Egs. (28) and (32) was first
derived on the basis of a primitive consideration on the chromatographic
mechanism (Eq. 12 in Ref. /0 or Eq. 1 in Ref. 11).

A fundamental study of gradient chromatography that directly leads to
the present work began 6 years ago, again in relationship with HA
chromatography (/2). It should be recalled that, in Ref. 12, the same
theoretical expression of a chromatogram as that derived in this paper
(Egs. 5 and 18, or Egs. 27-29) was derived without using the fundamental
continuity equation, Eq. (1), at all (see Eqgs. 34 and 36 in Ref. 12).

*In Ref. 1. Appendix 1, we mentioned the longitudinal diffusion that is provoked in
association with the reciprocal motion of molecules occurring between neighboring
microcolumns, and that is provoked by a vertical motion of molecules within a
microcolumn. As far as the former diffusion is concerned, the phenomenon is apparent,
occurring at the expense of the diffusion directly provoked by the first type of flow
heterogeneity in the carrier liquid. In other words, the apparent diffusion (or the reciprocal
motion itself occurring between neighboring microcolumns) contributes negatively to the
diffusion that is directly provoked by the first type of flow heterogencity. Similarly, the
longitudinal diffusion provoked in association with a vertical motion of molecules within a
microcolumn contributes negatively to the diffusion that is directly provoked by the second
type of flow heterogeneity in the carrier liquid (see Ref. I, Appendix I).
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APPENDIX

The migration of solute molecules in a microcolumn, in which no
longitudinal diffusion occurs, can be represented as

. [1=B'(m) ] ac
div,, | ———2C' |+ —=0 Al
lv xl: B'(m,) ds; (AD)

Equation (Al) has a general solution:

N DRI h e

If a molecular band with an infinitesimal width occurs, C' in Eq. (A2)
should be represented as a delta function; this leads to both Eqs. (32) and
(28").

SYMBOLS

m mean concentration of the gradient element in the
mobile phase within any infinitesimal vertical section
of the column. In some instances, m especially repre-
sents the mean concentration in the mobile phase
within the last infinitesimal vertical section at the outlet
of the column, or the solution that has just been eluted
out of the column. (To be precise, the terminology
“concentration” should be replaced by “concentration
or activity.” For the sake of simplicity, similar abbrevia-
tions will be used for any similar concepts appearing in
any part of this paper.)

my concentration of the gradient element in the mobile
phase within the first infinitesimal vertical section at
the inlet of the column

My, concentration of the gradient element at the beginning
of the concentration gradient flowing initially into the
first infinitesimal vertical section at the inlet of the
column

m, concentration of the gradient element in the mobile
phase within any infinitesimal vertical section of a
microcolumn. In some instances, m, especially repre-
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Si

Ll

sents the concentration in the mobile phase within the
last infinitesimal vertical section at the outlet of the
microcolumn. m, also represents the concentration of
the gradient element occurring within the vertical
section of the microcolumn in which the infinitesimal
band of sample molecules (of the chromatographic
component under consideration) exists

parameter with a dimension of concentration repre-
senting “time” in the second point of view on gradient
chromatography; in the first point of view, s represents
the product of g' and L’. Cf. the legend of Fig. 1
parameter with a dimension of concentration concern-
ing a microcolumn. In the second point of view on
gradient chromatography, s represents “time” elapsing
in the microcolumn, and, in the first point of view, the
product of g'/6\ and L;-8A, or ¢’ and L;. In some
instances when L;-8A represents the longitudinal
position of the infinitesimal band of sample molecules
(of the chromatographic component under considera-
tion) occurring in the microcolumn, (s,/g’)-8A also
represents the position of the band in the microcolumn
[since L; -8\ = (s,/g") - 8A; Eq. 33]

parameter with a dimension of concentration. r/g’ (with
dimensions of volume) represents the longitudinal
position on the column expressed as the sum of
interstitial volumes involved between the column inlet
and the longitudinal position under consideration
(since r/g’ = L'; Eq. 19)

parameter equivalent with r

parameter with a dimension of concentration concern-
ing a microcolumn. (#/g')-8A (with dimensions of
volume) represents the longitudinal position of the
infinitesimal band of sample molecules (of the chroma-
tographic component under consideration) occurring
in the microcolumn; this is expressed as the sum of
interstitial volumes involved between the inlet of the
microcolumn and the longitudinal position under
consideration

longitudinal position on the column expressed as the
sum of interstitial volumes involved between the col-
umn inlet and the longitudinal position under con-
sideration. In some instances, L’ especially represents
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the total column “length,” i.e., the total interstitial
volumes involved in the column

parameter equivalent with L’

parameter with dimensions of volume concerning a
microcolumn. L; - 8A represents the longitudinal posi-
tion on the microcolumn expressed as the sum of
interstitial volumes involved between the inlet of the
microcolumn and the longitudinal position under
consideration. In some instances, L;-8\ especially
represents the total “length” of the microcolumn, ie.,
the total interstitial volumes involved in the micro-
column. L; - 85X also represents the longitudinal position
of the infinitesimal band of sample molecules (of the
chromatographic component under consideration)
occurring in the microcolumn

distance between the column inlet and a mean position
of the band of the sample molecules (of the chroma-
tographic component under consideration) migrating
on the column; this is expressed as the sum of
interstitial volumes involved between the column inlet
and the longitudinal mean position of the band under
consideration

elution volume

ratio of the volume of the liquid that flows into (and out
of) a microcolumn to the volume that flows into (and
out of) the actual whole column. The microcolumn is
defined in such a way that the volume of the liquid that
flows into (and out of) any microcolumn is the same
within any unit time interval (7). This means that the A
value for any microcolumn is equal to one another
positive constant with a dimension of concentration/
volume representing the slope of the concentration
gradient in the column. This is expressed as the
increase in the concentration per unit “length” of the
column, measured from the outlet to the inlet; the
column “length” is expressed in units of volume. g'/6A
represents the slope of the concentration gradient
occurring in a microcolumn

positive parameter with dimensions of volume measur-
ing the longitudinal diffusion in the column

density of sample molecules (of the chromatographic
component under consideration) in the mobile phase
in the column
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G

Q

F
/

B(s, m),
B(r),and B

B'(m,)

© 90 NP A W~
e Rl e e B B B B e B

initial density of sample molecules (of the chromato-
graphic component under consideration) in the mobile
phase in the column

density of sample molecules (of the chromatographic
component under consideration) in the mobile phase
in a microcolumn

density of sample molecules (of the chromatographic
component under consideration) in the stationary
phase in a microcolumn

total density of sample molecules (of the chromato-
graphic component under consideration) in the vertical
section of the column; in this concept, the idea of the
existences of the mobile and the stationary phase is not
involved

initial total density of sample molecules (of the chroma-
tographic component under consideration) in the
vertical section of the column

parameter defined by Eq. (7)

common symbol representing C, 2, and F

partition of sample molecules (of the chromatographic
component under consideration) in the mobile phase
in a vertical column section, or the ratio of the amount
of molecules in the mobile phase to the total amount in
that column section. B, which is not accompanied by
parentheses, is used in the case when B is constant
partition of sample molecules (of the chromatographic
component under consideration) in the mobile phase
in a vertical section of a microcolumn
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